[МАТЕМАТИКА]
Так называемые аксиомы математики — это те немногие мыслительные определения, которые необходимы в математике в качестве исходного пункта. Математика — это наука о величинах; она исходит из понятия величины. Она дает последней скудную, недостаточную дефиницию и прибавляет затем внешним образом, в качестве аксиом, другие элементарные определенности величины, которые не содержатся в дефиниции, после чего они выступают как недоказанные и, разумеется, также и недоказуемые математически. Анализ величины выявил бы все эти аксиоматические определения как необходимые определения величины. Спенсер прав в том отношении, что кажущаяся нам самоочевидность этих аксиом унаследована нами. Они доказуемы диалектически, поскольку они не чистые тавтологии.
Из области математики. Ничто, кажется, не покоится на такой непоколебимой основе, как различие между четырьмя арифметическими действиями, элементами всей математики. И тем не менее уже с самого начала умножение оказывается сокращенным сложением, деление — сокращенным вычитанием определенного количества одинаковых чисел, а в одном случае — если делитель есть дробь — деление производится путем умножения на обратную дробь. А в алгебре идут гораздо дальше этого. Каждое вычитание (a — b) можно изобразить как сложение (—b+a), каждое деление a/b, как умножение ax1/b. При действиях со степенями идут еще значительно дальше. Все неизменные различия математических действий исчезают, всё можно изобразить в противоположной форме.
Степень — в виде корня (х2 = √x4), корень — в виде степени ( √x = х2). Единицу, деленную на степень или на корень, — в виде степени знаменателя ( 1/ √x = х 2; /х3 = х ). Умножение или деление степеней какой-нибудь величины превращается в сложение или вычитание их показателей. Каждое число можно рассматривать и изображать в виде степени всякого другого числа (логарифмы, y = ax). И это превращение из одной формы в другую, противоположную, вовсе не праздная игра, — это один из самых могучих рычагов математической науки, без которого в настоящее время нельзя произвести ни одного сколько-нибудь сложного вычисления. Пусть кто-нибудь попробует вычеркнуть из математики хотя бы только отрицательные и дробные степени, — и он увидит, что без них далеко не уедешь.
(— . — = +, ÷ = + √ —1 и т. д. разобрать до этого).
Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено, Ньютоном и Лейбницем.
Количество и качество. Число есть чистейшее количественное определение, какое мы только знаем. Но оно полно качественных различий. 1) Гегель, численность и единица, умножение, деление, возведение в степень, извлечение корня. Уже благодаря этому получаются, — чего не подчеркнул Гегель, — качественные различия: простые числа и произведения, простые корни и степени. 16 есть не только суммирование 16 единиц, оно также квадрат от 4 и биквадрат от 2. Более того, простые числа сообщают числам, получающимся из них путем умножения на другие числа, новые, вполне определенные качества: только четные числа делятся на два; аналогичное определение — для 4 и 8. Для деления на 3 мы имеем правило о сумме цифр. То же самое в случае 9 и 6, где оно соединяется также со свойством четного числа. Для 7 особый закон. На этом основываются фокусы с числами, которые непосвященным кажутся непонятными. Поэтому неверно то, что говорит Гегель («Количество», стр. 237) о мыслительной скудости арифметики. Ср., однако: «Мера» [456] .
Говоря о бесконечно большом и бесконечно малом, математика вводит такое качественное различие, которое имеет даже характер непреодолимой качественной противоположности: мы имеем здесь количества, столь колоссально отличные друг от друга, что между ними прекращается всякое рациональное отношение, всякое сравнение, и что они становятся количественно несоизмеримыми. Обычная несоизмеримость, например несоизмеримость круга и прямой линии, тоже представляет собой диалектическое качественное различие; но здесь [т. е. в математике бесконечного. Ред.] именно количественная разница однородных величин заостряет качественное различие до несоизмеримости.
Число. Отдельное число получает некоторое качество уже в числовой системе и сообразно тому, какова эта система. 9 есть не только суммированная девять раз 1, но и основание для 90, 99, 900000 и т. д. Все числовые законы зависят от положенной в основу системы и определяются ею. В двоичной и троичной системе 2 х 2 не = 4, а = 100 или = 11. Во всякой системе с нечетным основанием теряет свою силу различие четных и нечетных чисел. Например, в пятеричной системе 5 = 10, 10 = 20, 15 = 30. Точно так же в этой системе теряет свою силу правило о сумме цифр, делящейся на 3, для чисел кратных трем, resp. [respective — соответственно. Ред.] девяти (6 = 11, 9 = 14). Таким образом, основание числовой системы определяет качество не только себя самого, но и всех прочих чисел.
Если мы возьмем степенное отношение, то здесь дело идет еще дальше: всякое число можно рассматривать как степень всякого другого числа — существует столько систем логарифмов, сколько имеется целых и дробных чисел.
Единица. Ничто не выглядит проще, чем количественная единица, и ничто не оказывается многообразнее, чем эта единица, коль скоро мы начнем изучать ее в связи с соответствующей множественностью, с точки зрения различных способов происхождения ее из этой множественности. Единица — это, прежде всего, основное число всей системы положительных и отрицательных чисел, благодаря последовательному прибавлению которого к самому себе возникают все другие числа. — Единица есть выражение всех положительных, отрицательных и дробных степеней единицы: 12, √1, 1-2 все равны единице. — Единица есть значение всех дробей, у которых числитель и знаменатель оказываются равными. — Она есть выражение всякого числа, возведенного в нулевую степень, и поэтому она единственное число, логарифм которого во всех системах один и тот же, а именно = 0. Тем самым единица есть граница, делящая на две части все возможные системы логарифмов: если основание больше единицы, то логарифмы всех чисел, больших единицы, положительны, а логарифмы всех чисел, меньших единицы, отрицательны; если основание меньше единицы, то имеет место обратное.
Таким образом, если всякое число содержит в себе единицу, поскольку оно составляется из одних лишь сложенных друг с другом единиц, то единица, в свою очередь, содержит в себе все другие числа. Не только в возможности, поскольку мы любое число можем построить из одних только единиц, но и в действительности, поскольку единица является определенной степенью любого другого числа. Однако те самые математики, которые непринужденнейшим образом вводят, где им это удобно, в свои выкладки х° = 1 или же дробь, числитель и знаменатель которой равны и которая тоже, значит, представляет единицу, — математики, которые, следовательно, применяют математическим образом содержащуюся в единице множественность, морщат нос и строят гримасы, когда им говорят в общей форме, что единица и множественность являются нераздельными, проникающими друг друга понятиями и что множественность так же содержится в единице, как и единица в множественности. А в какой мере дело обстоит именно так, это мы видим, лишь только мы покидаем область чистых чисел. Уже при измерении линий, площадей и объемов обнаруживается, что мы можем принять за единицу любую величину соответствующего порядка, и то же самое относится к измерению времени, веса, движения и т. д. Для измерения клеток миллиметры и миллиграммы еще слишком велики, для измерения звездных расстояний или скорости света километр уже неудобен из-за малой величины, как мал килограмм для измерения масс планет, а тем более Солнца. Здесь с очевидностью обнаруживается, какое многообразие и какая множественность содержатся в столь простом на первый взгляд понятии единицы.